An Introduction to Tree-based ML models

Timothy Daley

Tree models can be thought of as rule sets

Sebastian Raschka STAT479 FS18. L01: Intro to Machine Learning

Page 2

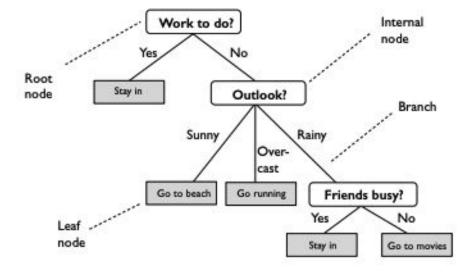


Figure 1: Example of a non-binary decision tree with categorical features.

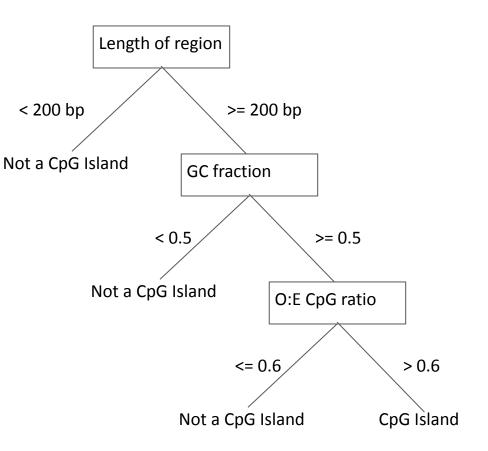
Example: CpG Islands

Definition:

- region with at least 200 bp,
- GC percentage greater than 50%,
- an observed-to-expected CpG ratio greater than 60%.

https://en.wikipedia.org/wiki/CpG_site#

CpG_islands



Tree models can be thought of as partitioning

the feature space

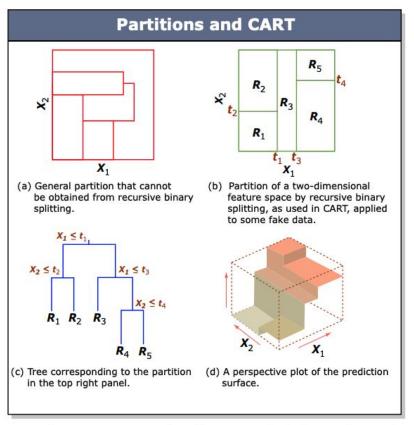
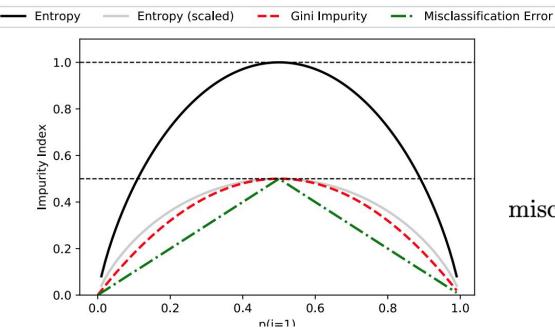


Image by MIT OpenCourseWare, adapted from Hastie et al., *The Elements of Statistical Learning*, Springer, 2009.

How to compute splits (classification)



Entropy or Gini impurity is used over classification accuracy because the former are differentiable (important for boosting) and tend to lead to better trees (example in ESL)

 $\begin{array}{l} \text{misclassification error}:1-\hat{p}\\\\ \text{Gini index}:\sum\hat{p}(1-\hat{p})\\\\ \text{cross-entropy}:-\sum\hat{p}\log\hat{p}\end{array}$

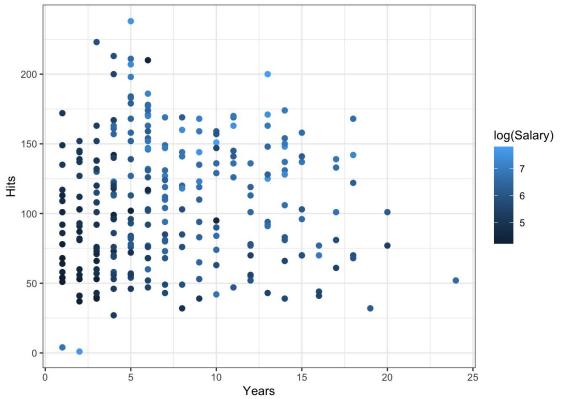
How to compute splits (regression)

Split by total within group variance

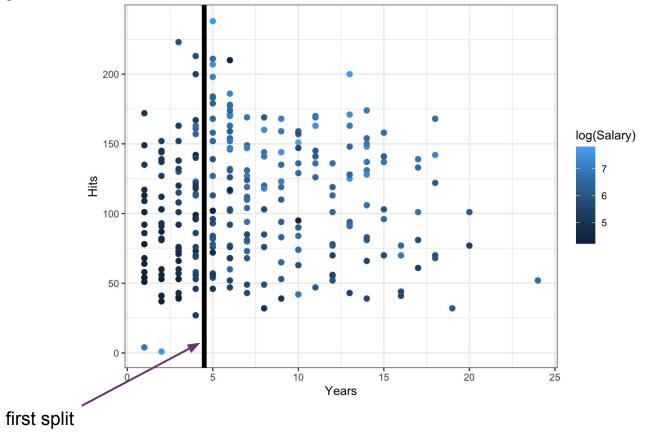
choose splitting point s s.t.

$$\arg\min_{s} \sum_{i:x_i < s} (y_i - \bar{y}_{x_i < s})^2 + \sum_{i:x_i \ge s} (y_i - \bar{y}_{x_i \ge s})^2$$

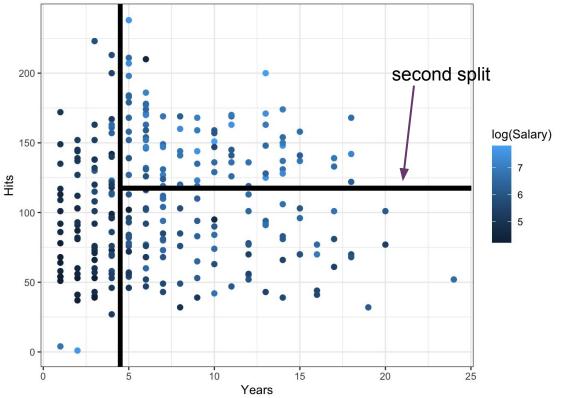
Example: Hitters



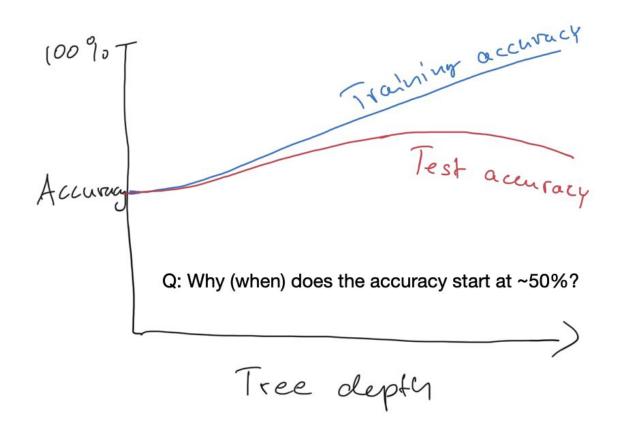
Example: Hitters



Example: Hitters



How tall/deep should trees be?



Tree pruning

- Adding more branches can't decrease training performance
- 2 options:
 - Stopping criteria
 - \circ $\$ Grow a big tree and trim
- Most implementations do the latter

Missing values

- Several ways to handle missing values:
 - Create an indicator variable of missing or not
 - Set missing values to a very large positive or negative number
 - \circ Imputation

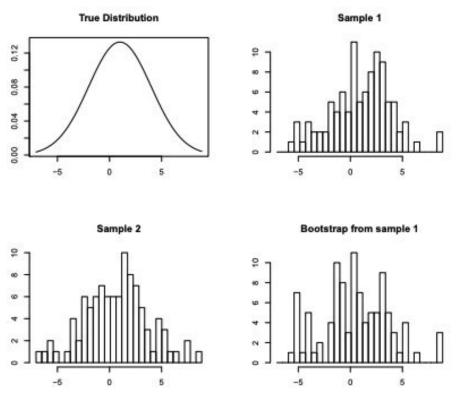
Missing values

- Several ways to handle missing values:
 - Create an indicator variable of missing or not
 - Set missing values to a very large positive or negative number
 - \leftarrow Imputation
 - In practice most missing data is not missing at random, so imputation will introduce bias into the model.

Random forests

- Trees are "weak" learners
 - They don't perform well individually
 - High variance
- Advantages:
 - Simple to interpret
 - Simple to calculate
 - Can capture non-linear behavior
- Bootstrap aggregating:
 - Sample the data, create a bunch tree, average the result
 - \circ Wisdom of the crowd

Bootstrapping



Source: https://www.andrew.cmu.edu/user/achoulde/95791/lectures/lecture05/lecture05_95791.pdf

~63.2% of observations will appear in the bootstrapped sample

Random forests

- Want variability in features, don't want the same features every time
 - Subset features for each bootstrap
 - Works to de-correlate trees
- OOB: Out of bag performance
 - For a given observation take all bootstraps that didn't use that observation
 - Pseudo-test set
- Feature importance
 - Permute values of a feature, measure performance
 - Higher error means feature is more important

(Gradient) Boosting

- Idea:
 - Take a weak learner
 - Iteratively improve the learner

$$egin{aligned} \hat{y}_i^{(0)} &= b \ \hat{y}_i^{(1)} &= b + f_1(x_i) \ \hat{y}_i^{(1)} &= b + f_1(x_i) + f_2(x_i) \ &\vdots \ \hat{y}) i^{(t)} &= \sum_{k=0}^t f_k(x_i) = \hat{y}_i^{(t-1)} + f_t(x_i) \end{aligned}$$

Gradient Boosting

How to determine $f_t(x)$?

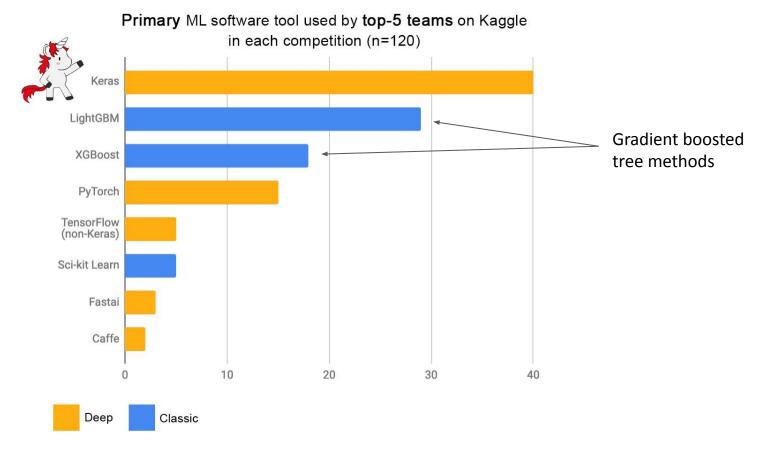
$$\begin{aligned} \text{Objective}^{(t)} &= \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)) + \Omega(f_t) \\ \text{Objective}^{(t)} &\approx \sum_{i=1}^{n} \left(l(y_i, \hat{y}_i^{(t-1)}) + \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}_i^{(t-1)}) f_t(x_i) \right. \\ &+ \frac{1}{2} \partial_{\hat{y}^{(t-1)}}^2 f_t^2(x_i) \right) + \Omega(f_t) \end{aligned}$$

Gradient Boosting

How to determine $f_t(x)$?

$$\begin{aligned} \text{Objective}^{(t)} &= \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)) + \Omega(f_t) \end{aligned} \\ \text{Objective}^{(t)} &\approx \sum_{i=1}^{n} \left(l(y_i, \hat{y}_i^{(t-1)}) + \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}_i^{(t-1)}) f_t(x_i) + \frac{1}{2} \partial_{\hat{y}^{(t-1)}}^2 f_t^2(x_i) \right) + \Omega(f_t) \end{aligned}$$

Success of Gradient Boosting



Application to real data: predicting outcome of cervical cancer biopsies

load('~/Downloads/cervical.RData')
head(cervical)

##			Number.of.s	exual.	partners F1	rst.sexual.in		um.or.pr	egnancies
##	1	18			4		15		1
#	2	15			1		14		1
#	3	34			1		15		1
#	4	52			5		16		4
#	5	46			3		21		4
#	6	42			3		23		2
#		Smok	es Smokes	years	Hormonal.C	ontraceptives	Hormonal.C	ontracep	tivesyears
#	1		0	()	0			
#	2		0	(E.	0			
#	3		0	()	0			
#	4		1	37	1	1			
#	5		0	()	1			1
#	6		0	(E.	0			
#		IUD	IUDyears.	STDs	STDsnumbe	r. STDsNumbe	er.of.diagn	osis	
#	1	0	0	0		0		0	
#	2	0	0	0		0		0	
#	3	0	0	0		0		0	
#	4	0	0	0		0		0	
#	5	0	0	0		0		0	
#	6	0	0	0		0		0	
#		STDsTime.since.first.diagnosis			STDsTime.since.last.diagnosis Biopsy				
#	1				1			1	Healthy
#	2				1			1	Healthy
#	3				1			1	Healthy
#	4		1		1 Healthy				
#	5				1			1	Healthy
10									

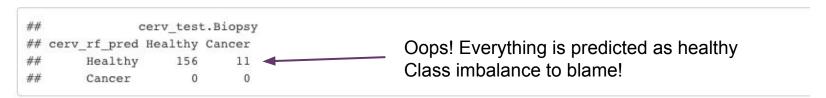
tab	le(cerv:	ical\$Biopsy)
##		
##	Cancer	Healthy
##	55	803

Random forest model

```
cervical$Biopsy = factor(cervical$Biopsy, levels = c("Healthy", "Cancer"))
train_ind = rbinom(dim(cervical)[1], 1, 0.8)
cerv_train = cervical[which(train_ind == 1), ]
cerv_test = cervical[which(train_ind == 0), ]
cerv_rf = randomForest::randomForest(subset(cerv_train, select=-c(Biopsy)), y = cerv_train$Biopsy)
cerv_rf_pred = predict(cerv_rf, cerv_train)
table(data.frame(cerv_rf_pred, cerv_train$Biopsy))
```

## cerv_train.Bi					
##	cerv_rf_pred	Healthy	Cancer		
##	Healthy	647	28		
##	Cancer	0	16		

```
cerv_rf_pred = predict(cerv_rf, cerv_test)
table(data.frame(cerv_rf_pred, cerv_test$Biopsy))
```

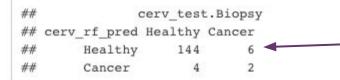


Random forest model, upsampling minority class

```
cerv_rf = randomForest::randomForest(subset(cerv_train, select=-c(Biopsy)), y = cerv_train$Biopsy, classwt = c(1,
2))
cerv_rf_pred = predict(cerv_rf, cerv_train)
table(data.frame(cerv rf pred, cerv train$Biopsy))
```

	c	cerv_train.Biopsy		
c	cerv_rf_pred	Healthy	Cancer	
	Healthy	638	0	
	Cancer	17	47	
	Healthy	638		

```
cerv_rf_pred = predict(cerv_rf, cerv_test)
table(data.frame(cerv rf pred, cerv test$Biopsy))
```

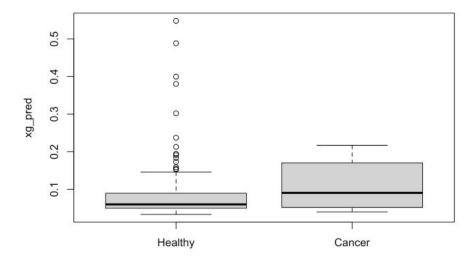


Better performance on predicting Cancer correctly, worse on predicting Healthy correctly

XgBoost model

cerv_xg = xgboost::xgboost(data = as.matrix(subset(cerv_train, select=-c(Biopsy))), label = as.numeric(cerv_train
\$Biopsy) - 1, objective = "binary:logistic", nrounds = 10)

cerv_xg_pred = predict(cerv_xg, as.matrix(subset(cerv_test, select=-c(Biopsy))))
boxplot(xg_pred ~ Biopsy, data.frame(xg_pred = cerv_xg_pred, Biopsy = cerv_test\$Biopsy))



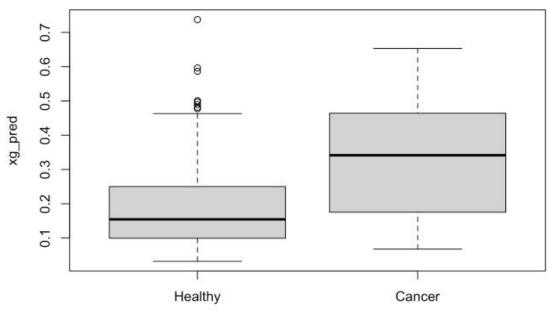
XgBoost model: upsample minority class

0.5 00 00 0.4 0.3 0 xg_pred 0.2 0.1 Healthy Cancer

upsample 1 times

Biopsy

XgBoost model: upsample minority class



upsample 5 times

Upsampling the minority class:

- improves the prediction of the minority class

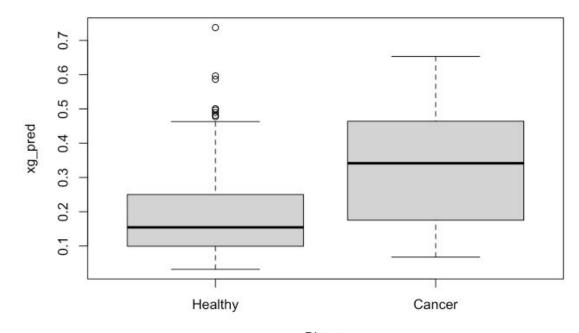
- worsens performance on the majority class

- loss of calibration of the model predictions

Ultimately, it's a question of trade-offs.

XgBoost model: upsample minority class

upsample 5 times



Biopsy